Distinct relationships between GLABRA2 and single-repeat R3 MYB transcription factors in the regulation of trichome and root hair patterning in Arabidopsis.
نویسندگان
چکیده
*The patterning of epidermal cell types in Arabidopsis is an excellent model for studying the molecular basis of cell specification. Trichome and root hair formation is controlled by a transcriptional activator complex that induces the homeobox gene GLABRA2 (GL2) and some single-repeat R3 MYB genes (single MYB). However, it remains unclear how the actions of GL2 and single MYBs are coordinated to regulate epidermal patterning. *GL2 is thought to act downstream of single MYBs to regulate trichome and root hair development. In order to test this hypothesis genetically, double and higher order mutants between gl2 and single myb were generated. *In these mutants, the glabrous phenotypes observed in the gl2 single mutants were partially recovered, suggesting that single MYBs may not act solely through GL2 to regulate trichome development. On the other hand, double and higher order mutants between gl2 and single myb phenocopied the root hair phenotype of gl2 single mutants, suggesting that GL2 and single MYBs act in a common pathway to regulate root hair patterning. *These findings reveal distinct relationships between GL2 and single MYBs in the regulation of trichome vs root hair development, and provide new insights into the molecular mechanism of epidermal patterning.
منابع مشابه
Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis
MYB transcription factors regulate multiple aspects of plant growth and development. Among the large family of MYB transcription factors, single-repeat R3 MYBs are characterized by their short sequence (<120 amino acids) consisting largely of the single MYB DNA-binding repeat. In the model plant Arabidopsis, R3 MYBs mediate lateral inhibition during epidermal patterning and are best characteriz...
متن کاملEctopic expression of R3 MYB transcription factor gene OsTCL1 in Arabidopsis, but not rice, affects trichome and root hair formation
In Arabidopsis, a MYB-bHLH-WD40 (MBW) transcriptional activator complex activates the homeodomain protein gene GLABRA2 (GL2), leading to the promotion of trichome formation and inhibition of root hair formation. The same MBW complex also activates single-repeat R3 MYB genes. R3 MYBs in turn, play a negative feedback role by competing with R2R3 MYB proteins for binding bHLH proteins, thus blocki...
متن کاملRegulation of cell fate determination in plants
Building a multicellular organism, like a plant, from a single cell requires the coordinated formation of different cell types in a spatiotemporal arrangement. How different cell types arise in appropriate places and at appropriate times is one of the most intensively investigated questions in modern plant biology. Using models such as trichome formation, root hair formation, and stomatal devel...
متن کاملControl of Plant Trichome and Root-Hair Development by a Tomato (Solanum lycopersicum) R3 MYB Transcription Factor
In Arabidopsis thaliana the CPC-like MYB transcription factors [CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC 1, 2, 3/CPC-LIKE MYB 3 (ETC1, ETC2, ETC3/CPL3), TRICHOMELESS 1, 2/CPC-LIKE MYB 4 (TCL1, TCL2/CPL4)] and the bHLH transcription factors [GLABRA3 (GL3) and ENHANCER OF GLABRA 3 (EGL3)] are central regulators of trichome and root-hair development. We identified TRY and GL3 homol...
متن کاملThe TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci.
A network of three classes of proteins consisting of bHLH and MYB transcription factors, and a WD40 repeat protein, TRANSPARENT TESTA GLABRA1 (TTG1), act in concert to activate trichome initiation and patterning. Using YFP-TTG1 translational fusions, we show that TTG1 is expressed ubiquitously in Arabidopsis leaves and is preferentially localized in the nuclei of trichomes at all developmental ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 185 2 شماره
صفحات -
تاریخ انتشار 2010